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ABSTRACT 

The Regge-eikonal model in d3 field theory is studied within 

the framework of Gribov’s reggeon calculus. A condition is derived 

what sort of multi-reggeon exchange diagrams are important for 

large energies, and it is shown that the eikonal form is ~valid only 

in the weak-coupling limit, i. e. , when the inner coupling constant 

of the reggeons goes to zero: gzw l/Pn s. The breakdown of the 

eikonal approximation outside of this limit is shown to be an effect 

of inelastic intermediate states. 
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1. INTRODUCTION 

In recent years there have been several attempts, within simple 

field-theoretic models, to justify the eikonal form for the elastic 

scattering amplitude. The most simple class of Feynmann diagrams, 

having an eikonal high energy limit, are the generalized ladders, i.e., 

simple ladders in the s-channel with the rungs crossed in all possible 

31 
ways. It has been shown in QED and 4 that if one takes certain parts 

of these diagrams and then sums over all these ladders, one obtains 

the eikonal form in the high-energy limit: 
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The parts of the diagrams which have been taken into account are 

associated with a definite path of the large momenta through the dia- 

gram, namely the eikonal path along the straight lines of the ladders. 

In QED the eikonal contributions are the dominant ones for large energies 

but not for d3. 

However, since the eikonal scattering amplitude is often used as 

a model for Regge-cuts, phenomenologists are more interested in a , 

theoretical study of the formula (1.1) with 

X(s,b,) = (1.3) 
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instead of (1. 2), where R(s, t) is the amplitude for the one-Regge 

exchange, the external masses being on the mass shell. Such an 

amplitude is supposed to arise from those Feynman diagrams where 

reggeons are exchanged between the scattering particles and the 

reggeon legs coupled to them in all possible orderings. (Fig. 1. ) 

This is why people have been interested in the high-energy behavior 

of the s-channel iteration of ladders in $ 3 2-7 
and towers in QED. 839 

However, existing derivations Z-5,8,9 of the eikonal form of these 

diagrams are not satisfactory in two respects. Firstly, among the 

considered diagrams there are the Mandelstam diagram (Fig. 2a) and 

that of Amati, Fubini and Stanghellini (AFS) (Fig. 2b) and it is known 10,ll 

that the first has Regge-cut behavior while the second is proportional to 

ln sis. Thus they cannot contribute equally in the high-energy limit, 

and any exact study must take care of this. In the earlier studies, how- 

ever, all permutations in Fig. 1 seem to have the same s-behavior. 

Secondly, by conventional methods such as used in these papers, for 

each order of the coupling constant only the first leading Pn s -terms 

is found, and then their sum must not necessarily be the true high- 

energy behavior of the infinite sum of Feynman diagrams. In fact, this 

leading term summation leads to the combined limit s- m, g2-+ II Pns 

(weak coupling limit ): 

s - m, g2Pns =const (1.4) 
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In the present paper an attempt is made to perform a study of the 

Regge-eikonal model without these two defects. Since we want to find 

the high-energy behavior at fixed coupling constants, we cannot proceed 

in the conventional way of summing leading en s-terms. Instead of 

this, we use for the exchanged reggeons Bethe-Salpeter amplitudes and 

place them into the Feynman diagrams (Fig. 1). We are, of course, 

not able to find the exact solutions of the Bethe-Salpeter equation, but 

for our purposes it is sufficient to know its analytic properties and, for 

2 
control, the limit g * 0. To find the high-energy behavior of the 

amplitudes of multiregge exchange we use the reggeon-calculus of 

12 
Gribov. The result obtained in this way is expected to be valid for 

all values of the coupling constant. 

This is the technique we shall use for our study of the diagrams in 

Fig. 1, first in b3 and afterwards in QED. Our main task will be a 

detailed study of the Gribov vertices, which couple the reggeons to the 

scattering particles and are in general multidimensional integrals over 

the internal momenta. For eikonalization, they must decouple into a 

produce of reggeon vertex functions, as it can be seen by expanding the 

exponential in (1. 1). Such a decoupling holds only when the internal 

coupling constant of the reggeons goes to zero as in (1.4). Otherwise, 

the eikonal form does not emerge. We show that the breaking parts, 

which can be neglected only in the weak coupling limit, belong to 

inelastic intermediate states between the successive exchange of 
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reggeons. Thus our study within a simple field theoretic model of the 

eikonal approximation confirms that (1. 1) is not valid because of the 

neglect of inelastic contributions. In the framework of o3 the breakdown 

of the eikonal approximation has already been “’ shown, ’ but no interpretation 

of the breaking terms has been given. Besides this interpretation we 

find that only a certain subgroup of the diagrams of Fig. 1 contributes 

to the leading high energy behavior. This is analogous to the situation 

of the Mandelstam diagram and that of AFS: The Gribov vertex, considered 

as a particle-particle multireggeon amplitude, must have a certain 

singularity structure in its subenergies. 

In this first paper we treat the d3 case. In Sec. II we describe our 

calculation scheme, which is based on the pertubation theoretical de- 

rivation of Gribov s reggeon calculus. Application of this technique to 

the diagrams of Fig. 1 shows that (1.1) is not correct. Furthermore, 

we consider the Gribov vertices as reggeon-particle amplitutudes and 

find, as a consquence of its analytical properties, that certain structures 

of Fig. 1 are unimportant. In the next section we let g2 approach zero 

as in (1.4) and see how eikonalization appears. A physical interpretation 

is given in Sec. IV. In a following paper our considerations 

will be extended to QED. 

II. MULTIREGGE EXCHANGE 

The derivation 
12 

of Gr ibov ‘s reggeon calculus, as a prescription 
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for the calculation of the high-energy behavior of certain Feynman dia- 

grams, is based on the assumption that, e.g., for the two-reggeon 

exchange in Fig. 3a, the high-energy behavior is determined by those 

parts of the momentum integrations in the upper and lower parts, where 

the legs of the reggeons are not infinitely far from their mass-shell and 

the momentum transfer through the reggeons is finite, too. When the 

reggeons are built up by 43-ladders, this assumption is justified because 

of da.mping properties of the reggeon amplitude for large values of its 

external masses and momentum transfer. As a result of this, the 

region of momentum integration can be restricted and the expressions 

for the Feynman propagators simplify. The most convenient way to see 

this is the introduction of Sudakov variables or, equivalently, infinite 

momentum variables (p, = p. + p 3, p- = p. - p3, pI). For our consid- 

erations we choose the latter ones. 

For an illustration of these approximations in terms of infinite 

momentum variables we write down the expression for Fig. 3a. The 

reggeons are assumed to be ladders and have the factorized form: 

2 ‘2 ‘2 
R:P~‘P~; p;>bf: s,t) = b(o;,pt ;t)s 0 (t ) 

E(t) b(p;,p’,2:t) (2.1) 

c(t) = 1 + e-ira(t) 

and we use a reference system where the upper particle has only a (large) 

3-component along the positive direction, the lower along the negative 

direction. Starting with the upper part of the diagram, we introduce 
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the notations: 

lr2’z 
= -(r3)z- w + & (riL +M2) 

(r2)+ = (r3)- = 2~ 

2 
(r2)- = (r3)+ = -J$& (2.2) 

h-1)0 = (rlJz = 0 

(Pi )+ = 2wxi; 2W(Pi)- = y. 1 

zw(qi =Y 

In the propagators we everywhere neglect the q+ component with respect 

1 
to the pi+ and all terms- ; : 

(r2 -P,)‘- 
2 

(1 -xlk.-li 
2 2 

*M -yl)-pil 

,-P2-q)2- 
2 

k2-P (I -x1 -x2)(rli +M 2 
-yl-Yz-Y’ -(p*+P 2 +q)1 

2 

(r fr -p -4) ‘- 
2 1 1 

(I -xl)(rfI+M2-yI -y)-(rl -Pi -4): 

(P2-rl) 
2 
- XIYl - (P 1 - rl)t 

(Pi+9iz” x l(yl +Y’- (P, +q)? 

(pz+d2- x2tY2+Y) - (P2+q); 

(p, +r1J2, x2Y2- (p2 +rl)t 

(2.3) 

(Pi + P;IZ- (PI+ p;-, = !2w j2x1x; 

= s x1x; 
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we have to take care of double counting by a factorial i/n!. Thus the 

general form of the amplitude with the exchange of n reggeons is: 

T,(s,t) = 2is $ 6(‘+Zqi 
1 

-2I‘& 

x [In(ri,ql... snl)l 2P,(s,q+. . . Pn(s,qn) 

Pi(s,qi’ = s 
4+ 

3-c& (2.6) 

where the Gribov vertex I, is the sum of all structures in Fig. 1. 

Expanding the exponential of the eikonal formula (1. 1) and comparing 

th the n order term with (2.6) we see that in order to reproduce the eikonal 

form the Gribov vertex functions must factorize into a product of n 

reggeon vertex functions, their external masses being on the mass shell. 

Thus we have to see whether and under what conditions such a factorization 

is valid. It will be necessary to perform the y-integrations in (2.5), and 

this can be done most easily if we use a spectral representation for the 

reggeon vertex function, which contains the analytical structure in the 

external masses and in momentum transfer: 

+1 03 

b(p;.p;2:t’ = dx 
s / 

dL P(LZ’ 
1-l-z 2 l-z ‘2 

-1 
<O 

5 - TP1 - 2 P$ + F 
‘ (2.7) 

t - ie 
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The primed momenta belong to the lower part, which is treated 

in a similar way. Since q, does not occur in the upper part, and q- 

in the lower, the amplitude factorizes with respect to these two 

integrations : 

I13ah-ll,q1) I ‘S 
cu[ -(ri+q)2,1 

5[ -kl+q)~l 

xs 
a[ -(r,-q)2,1 

fI-(r,-s):I (2.4) 

~u[ -(rl+q)121 ~71 -kl-9) 
X 

2 

1 1 1 
X 

(r2-p9j2-m2 (r2-p~-p2-q)2-m2 (r2+I.l-pl-q)2 -m2 

x b [ (pl-r1)2, (pl+q)2;(rlq)21 
1 1 

(PI-r1 )‘-m2 (plh1)2-m2 

x b[ (~~+4’~, (p2+rl’2;k1-q)21 
1 1 

(p2+q)2-m2 (p2+p1)2-m2 

(2.5) 

where in (2.5) the approximations (2. 3) have to be inserted. From 

the y-integrations we obtain the condition that there must be always 

singularities in both the upper and lower half plane, and this restricts 

the x integrations to the interval (0,1). 

The form (2.4) holds for all structures of Fig. 1. When we sum 

over all permutations of the reggeon legs at the upper and lower line, 
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+1 31 

=J J 
dz dr 

p(L1z) 
2 

-1 r0 
t - ie13 

t -ic 

(2.8 ’ 

This spectral form is justified 
13,14 at least for our 03-ladders, but 

they are assumed to be still of more general validity. 

With this ansatz we return to (2.5) and the corresponding expression 

for Fig. 3b-d, perform the y-integrations. There is no evidence for a 

factorization of the Gribov vertex. Thus we conclude that the eikonal 

form (1. 1) cannot be justified within our model. In the next section we 

shall see that the situation changes when we take the weak coupling limit. 

For the rest of this section we concentrate on the 

question what sort of structures and permutations at the upper and lower 

line if Fig. 1 are important in the high-energy limit. For this we per- 

form the y-integrations, within (2. 5) and similar expressions for other 

diagrams of Fig. 1, and find the following: only those structures give a 

result different from zero, where--following within the upper or lower 

part the straight line from the incoming particle to the outgoing one--first 

all reggeons have to be emitted in an arbitrary order, before any reggeon 

is absorbed again. We call them”nested” diagrams, and one counter- 

example is given in Fig. 4. 
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The remaining structures are zero in our formalism, since for 

some of the y-integrations all singularities are located in one half-plane 

and the integration contour can be closed in the other half-plane without 

singularities. This means that the high-energy behavior of these diagrams 

is much weaker than that of the nested ones. 

This is quite analogous to the situation of the Mandelstam and AFS 

diagrams (Fig. 2). The latter has no Regge-cut behavior lo, I1 and 

behaves as Bn s/s for large energies. In the Gribov calculus the 

vertices of this diagram turn out to be zero, since for the y-integration 

all singularities are in the lower half plane and the contour can be closed 

in the upper one. Thus the vanishing is due to singularity structure of the 

Gribov vertex in the y-variable. When the Gribov vertex is considered 

as a reggeon-particle -+ reggeon-particle amplitude (Fig. 5), the y- 

variable is just the energy, and for the AFS-structure, there are only 

right -hand singularities, but no left -hand ones (the third spectral function 

is zero). Therefore, a necessary condition for the nonvanishing of a 

Regge-cut amplitude is the existence of both right and left-hand singularities 

in the energy-variable of the reggeon-particle scattering amplitudes. 

For the exchange of n reggeons one has to generalize this argument. 

At the upper and lower end of the amplitude there are now pieces (Fig. 6) 

which represent amplitudes with two particles and n reggeons, integra- 

ted over n-l independent subenergies (e.g., the sk in Fig. 6; sk is the 

subenergy of the left particle together with the first k reggeons ). For 
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our diagrams of Fig. 1 with the notation of Fig. 7, the subenergies sk 

are given by the (qij )-: 

sk = (r 2 -rl +q12 - qio +.-- +9KK+1 -9~~~1) 
2 

=(r fq 
2 

2 KKi1’ 

= ‘KK+1 (2.4) 

and the Gribov vertices can be written as: 

m 

I= 
s 

dsl . . . dsnel A$, . ..sn-t; . ..) (2.10) 

-co 

A is the two-particle n-reggeon amplitude and depends still on onther 

variables than the sk (e.g., the reggeon masses). Equation 2.10 

will be different from zero only when A has right and left-hand singularities 

in all subenergies s 
k’ Otherwise one could close the contour in one half- 

plane that is free from singularities and obtains zero. In Fig. 4 this can 

be illustrated, when we use the energies s1 and s2 as indicated. Then 

there is at,fixed s2,for s1 only a right-hand cut. As similar situation holds for 

all non-nested diagrams, as it can be seen by appropriate choices of 

subenergies. 

For the nested graphs we still rewrite (2.10) by turning around the 

integrations paths: 
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I=! dsi.‘. i dsn-idiscsi...Sn-iA 

siO 
S n-10 

(2.11) 

where s k0 
are the thresholds in the Sk-channels and the discontinuity has 

to be taken across the cuts in all subenergies. 

That only the nested graphs are important for large energies is not 

obvious from other studies of the multi-ladder exchange in $3. There 

all structures of Fig. 1 are of the same order in s and no distinctionis 

made between the AFS and Mandelstam diagram. 

III. THE WEAK-COUPLING LIMIT 

All results of the last section are valid for the limit s - m and 

fixed coupling constant. We now shall see how in the weak-coupling 

limit (1.4) the situation changes and the Gribov vertices In of (2.6) 

split up into a product of the reggeon vertex function, just as it was 

found to be necessary for the eikonal form. The limit (1.4) is reached, 

when we calculate the limit g‘ - 0 of the Gribov vertex (2.8) and similar 

expressions for the other structures. For this we need some properties 

of the spectral form (2.4) and the trajectory function a.(t) in this limit. 

They are derived in the appendix by means of the Bethe-Salpeter equations: 

a(t) 
1 

4 2 (3.1) 
2 - 

g -0 
-x(1-x)t + m ic 
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2 
= -i+--g co(t) 

16~’ 

PCS, z)- ig 
2 

52 -0 

p(Lz) - L 
-a- 1 

5 

p JZ), p,bk-+ ig 
-+m g-0 

(3.2) 

(3.3) 

One easily checks that this behavior is in accordance with the well-known 

15 
weak-coupling result : 

(3.4) 

Now we return to (2.5). In the limit g2 - 0 the trajectory function 

approaches -1 and the x-integrations in (2. 5) diverge at the point 

xi = 0. To see this in more detail we use the spectral form (2.8) and 

perform the y-integrations by picking up the poles in one half plane; 

d”pzL ;dxi ‘i”‘dx2 xi 

0 0 

x2 

x 1 

x2 
- Max - D;+fi I 
x1 2 

i+z 
D1” = D1 - xi + 
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a 
D2 l*2 2, 

2 

=D2-xi 2 
(r2-Pi)l Tm _ bl+pz +q)2_ + m2 

l-x l-x -x 
1 1 2 1 

i-Z2 b, +pz +q)f + m2 
-x2 2 1-x*-x2 1 (3.5) 

l*i 
D4 =$ +F 

t-Z2 

(p1+9)t - + (ri 

Iti2 D2 = c2 f~ 2 
- 9jl 

Apart from xi = 0 there are also divergencies at xi = 1. First we take 

the point x1 = x2 = 0. In the limit g’-+O, the integral (without the constant 

factor in front of it) is found to diverge proportional to 1/g?, and the 

coefficient is found by partial integration with respect to the xi: 

(ig)’ 
a0 [ -(rl +q)t 1 

(Y,[ -(rl+q)tl + cy,[ -(r-4 -q$ 
(3.6) 

Similarly, the expression for Fig. 3b contains a divergence at x1=x2=0. 

too, and its contribution is (3. 6) with qi replaced by -ql, because 

Fig. 3a and b differ only by the interchange of the reggeons. The sum 

of these two contributions is (ig)‘, the square of the reggeon vertex 

function in the weak-coupling limit (3.4). The corresponding two-reggeon 

exchange amplitude has the eikonal form: 
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d2qi (igj4 s 
LY [-(rl--q)]l 

E[-h-,-q): I 

XS 

a[ -(ri+q)~l 
5[ -(ri+q)~l (3.10) 

When xi 2 =x = 0, the large momenta of the incoming particles are 

restricted onto the straight lines through the diagram, and since these 

lines are responsible for the eikonal form, they will be called the 

“eikonal path”. 

We are still left with the other divergent point of (3. 5) at xi = 1 

and xZ = 0. This point is associated with another path of the large momenta 

through the diagram, and its divergence is also proportional to 1/g4- 

However, we shall not take into account this contribution and confine 

ourselves to the eikonal paths. The reason for this will be discussed at 

the end of this section. For the remaining structures of Fig. 3c, d, 

one can show that in the limit g 2 
+O there are only divergencies 1/g2, 

and thus they are less important in the weak-coupling limit. 

A similar study of the n-reggeon case shows the following generalization: 

in the limit g 2 +O, only a certain subgroup of the nested diagrams, those 

of Fig. 8, are important, and their eikonal path contributions add up ta a factor- 

izing Gribov vertex, (ig)n. The diagrams of Fig. 8 will be called then “maximal 

nested” ones (in accordance with Ref. 4), since on the straight line all 

reggeons are completely contained in other reggeons. For the remaining, 
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non-maximal nested diagrams, it can be shown that they have weaker 

divergencies in the x-integrations and thus go stronger to zero when 

g2+0 than the maximal nested diagrams. 

We still have to explain our neglect of the noneikonal paths. As 

we have seen, in the weak-coupling limit the Gribov vertices are deter- 

mined by definite points in the x-integrations, and these points can be 

associated with definite paths of the large momenta through the diagram. 

16 
They are the same as the t-paths of Tictopoulos, and the leading 

behavior of a diagram always belongs to the shortest t-path. For diagrams 

like that of Fig. 8 the shortest path runs along the legs of the lowest 

reggeon and is more important than the eikonal path along the straight 

line. Thus the eikonal form cannot be the true high-energy behavior. 

But this is a specific feature of qS3 theory. In QED, as we shall show in 

a following paper, the spin numerators along the straight electron lines 

suppress all other paths than the eikonal one. Apart from this dominance 

3 
of paths, the situation is the same as in $ , and thus the eikonal form in 

QED represents the true high-energy behavior. The o3 study in the present 

paper is to be considered as a preparation of the more realistic QED- 

model, and this is why we neglect here complications, that arise only in 

o3 and not in QED. 

Before we come to a more physical interpretation of what happens 

in the n-reggeon exchange amplitudes at g2+0, we want to comment the 

limit ii. 4). A brief consideration of the high-energy behavior of a simple 
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t-channel ladder shows that the approximation 

b2(p;,p;;t) smCt) - (ig)2 s 
-1 f g2/i6T2 a()@) 

(3.11) 

is valid when s - m, but 1n s g2 = const. The right-hand side of (3. ii) 

is derived 
15 

by the usual summation over leading Pn s-terms in each 

order of the coupling constant, and we conclude that this technique 

derives the weak-coupling l.imit (1.4) but not the more interesting limit 

s - m and g2 fixed. On the other hand, the weak-coupling limit of our 

approach should lead to the same result as the leading term summation. 

This is indeed the case, as we can see by comparing Ref. 4 with our 

results. There it is assumedthat the maximal nested diagrams are the 

leading ones in each order (by powers of Pn s stronger than non-maximal 

nested), and the eikonal form is derived. Our study leads to the same 

result, because the statement that in the weak-coupling limit the non- 

maximal nested diagrams are weaker by powers of g2 is equivalent to 

the statement that--for a given order of the coupling constant--diagrams 

with non-maximal structures are lower than the maximal nested ones by 

powers in 1n s. 

IV. INTERPRETATION OF THE BREAKDOWN 
OF THE EIKONAL APPROXIMATION 

We finally come to a physical interpretation of that what happens 

in the weak-coupling limit. The variables x., as defined in (2. S), are 
1 
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fractions of the large incoming momenta, and the condition of the non- 

vanishing of the y-integration restricts them to the interval (0, 1). Out- 

side of the weak-coupling limit, there is no evidence of eikonalization, 

since the whole x-interval contributes. In the weak-coupling limit, 

only the end points of the interval become important, and they correspond 

to a definite path of the large momenta through the diagram. One of these 

paths runs along the straight lines of the scattering particles and its 

contribution yields the eikonal form. Thus it is a characteristic feature 

of the eikonal approximation, that the scattering particles retain their 

large momenta during the scattering process and interact via the emission 

and absorption of soft reggeons. This is completely equivalent to the 

eikonalization of exchange of virtual particles (generalized ladders). 

This picture follows immediately from our choice of variables and 

approximation rules. For a better understanding, however, it is useful 

to consider the situation also from another side. For this we return to 

the form (2.11) of the Gribov vertex. The integrand of this representation 

is obtained from A by taking the discontinuities across the subenergy 

singularities (in our notation, the s k are identical to the y KK+i )’ If A 

were a usual Feynman diagram with n+2 external particles, we would 

obtain the discontinuities by cutting the internal lines and using the Wick- 

Cutcosky rules, 
17 

But A is an amplitude with 2 particles and n reggeons, 

and the latter are coupled to the internal lines of A through the reggeon 

vertex functions b(mf , m g; t) instead of coupling constants for particles. 
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These functions b have already cuts in its mass variables, as it can be 

seen by replacing the reggeons by ladders. For the calculation of 

discontinuities of A one has to cut not only the internal lines of A, but 

also those of b, and then to apply the Wick-Cutkosky rules. In this way, 

one obtains for the Gribov vertex a decomposition into a sum of terms, 

each of which corresponds to a certain intermediate state (Fig. 9 for 

the two-reggeon case). Such a decomposition holds for all structures 

of A is,19 and the eikonal approximation is obtained from it by picking 

up only the elastic intermediate state. For the two-reggeon cases: 

discs A(s,t,reggeon masses) = b2. 6 (s-m’) + inelastic contributions 
(4.1) 

and from this: 

al 

I = 
/ 

ds discs A = bz + inelastic contributions 

m2 

(4.2) 

(b is the coupling function of the reggeon to the particle line, the particle 

masses being on-mass shell). For the neglect of the inelastic contributions, 

however, there is no justification, and the eikonal form is not valid. 

In the weak-coupling limit, only the term with the lowest power 

of g2 in the decomposition (4. 1) is important, and because of (3.4): 

b - ig, this is the elastic contribution. Thus the weak-coupling limit 

suppresses all inelastic contributions, and yields the eikonal form. It 

is useful to see this in more detail, because in (4. 2) there may be some 
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cancellations between elastic and inelastic terms. For the AFS-diagram 

(Fig. 2b) it is known 
11 that the elastic contribution is exactly cancelled 

by the sum of all other terms, and this means that in the weak coupling 

limit, parts of the two-particle contributions must be equal to the elastic 

terms and proportional to gzO In the Mandelstam diagram (Fig. 2a), 

there is no one-particle intermediate state at all, but such as in the AFS- 

diagram, the two-particle contribution in the weak-coupling limit equals 

the one-particle elastic term and there are no other contributions that could 

cancel this. Thus, in the weak-coupling limit, the Mandelstam diagram 

has only the elastic intermediate state and takes the eikonal form. All 

this can be generalized to three and more reggeons. 

V. CONCLUSIONS 

We have considered the breakdown of the eikonal approximation 

from two points of view. In the first case, we used a parton-like 

picture and found that eikonalization holds when the scattering particles 

retain their large momenta during the scattering process. Emission and 

absorption of reggeons can be interpreted as a fragmentation of the parti- 

cles, and in the case of eikonalization their momenta are small in com- 

parison with that of the scattering particle. This is not in agreement with 

the par-ton picture of hadrons, and the eikonal approximation must fail. 

We also interpreted the situation in terms of Gribov’s reggeon 

calculus. There the Gribov vertex can be written as an integral over 
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energy-discontinuities of particle-reggeon amplitudes and decomposed 

into contributions of different intermediate states. The eikonal form 

arises, when only the elastic intermediate state is taken into account, 

but the neglect of other contributions is not justified. Only in the weak- 

coupling limit the inelastic terms are suppressed, and the eikonal form 

is true. 

From the second explanation it becomes clear which corrections 

should be added to the eikonal formula. They must contain the con- 

tribution of all inelastic states, but, unfortunately, we have no evidence 

that they have any simple form, as it is desirable for practical applications. 
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APPENDIX 

In this appendix we shall derive some properties of the spectral 

representation (2.7), (2.8) for o3 ladders. For this we use the same 

technique and approximations as in Sec. II. First we write down the 

Bethe-Salpeter equation for the ladders (Fig. iO), neglect the inhomogenous 

term and insert the spectral ansatz for the solution. The denominators 

are decomposed according to Ref. 13 in the following form: 

1 1 1 1 
(r2-p)2-p2 <- %P-r,) 2- +‘(P+ri)2+i5 /2 (2r,)2 (p-r-f) 2 -m (p+ri)2-m2 

1 1 

(r2-p)2- p2 <‘- - 1;z’(p-rl)2 - y(P+rl)2 +$” (2r1) 2 

i 

l+z’ 1-z’ 

1 

1 2 2 
X 

(p-r1)2-m2 (p+rl J2- m2 
+ + 

i- (p-r-i )2- m2 -3 (p+r, )2- m2 

1 
X (A. 1) Lf- l+z' ,(p-,,)2 - A$ l-z (2 (p+r1J2 +4 L?.q2 1 

Now we use the same approximations as in Sec. II, perform the 

p and pI integrations by taking the residues and by symmetrical inte- 

grations, respectively, and obtain for the spectral function the integral 

equation: 
+1 m 

di” K(5, z; c’, z’) p (L’, z’) (A. 2) 
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Here we have used the following abbreviations: 

1 2 
Wi,z;‘C,z’) = dx x l-x 1 

0 5’ - Mu 
(A.3) 

1+z 2 Mu = em l-z 2 
+-m 

2 (A. 4) 

2-c z’ 

si(z)2 = (A. 5) 

z>z’ 

2 

5,(z) = k(z) + 4” (A.6) 

From this we first derive the large-p-behavior. After performing 
- 

the x-integration by means of the 6 -function we find: 

K(Lz;L”,z’) TJ 5 -w(t)- 1 [Mu] Q+) -‘[Go] &) 
(A.7) 

5 +m L’ - M(z )2 

ij(Lz) 4 P) - I F,(z) (A.8) 
5 -02 

+1 m 
2 

i;,(z) = + 
J J 

dz’ di/ tw21 a) - [zI(z,2] a(t) 
8(h) -1 VI - M(z02 

p(s, z,) 

t-0 (z? 5 ‘(A.9) 
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Now we take the limit g 2 -0. In order to have the same power of g2 on 

both sides of (A. 9), there must be one divergent integration in the limit 

g2 - 0, which cancels the factor g2 in front of the integral. Such a 

divergence is achieved since 

ff (t ) - -1 +L a (t) 

2 
g -0 

16rr2 ’ 

where a,(t) has to be determined by the integral equation. For (Y- -1 

we may neglect the second term in (A. 9) because of the p -dependence 

2 in M(z) and obtain in the limit (Y- -1: 

+1 
2 

pJz)= --+ L- i6rr2 

8(2~) Mu g’s,(t) 
dz;Jz ‘) 

Integrating both sides with respect to z, we have: 

1 
0 -x(i-x)t + m2 

(A. IO) 

(A. 11) 

(A. 12) 

in accordance with perturbation theoretical calculations. 16 
But there is 

still one unknown constant, an overall factor of p,, which cannot be 

determined from our homogeneous integral equation. This constant 

can be found, since we know the weak-coupling limit of the vertex 

function (3. ii): b(mF, m2; t) 
+1 Lv2 

- ig. This yields : 

ig = lim 
I I 

dz d< P(L z) 

2 1+z 2 1-z 2 l-z 2 
g-o -1 CO <-,rn --m +-t 

2 4 
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+1 
dz’ lim p, (z’) 

2 g +o 
and 

lim 
2 

p,(z) = L 1 

g -0 
8(2d3 M(zj2 

(A. 13) 

(A. 14) 

Next we are interested in the representation (2.8): 

1 1 

kz-m2 kz-m2 

P(5, z) 
2 

< _ l+k;+k;++ 

(A. 15) 

We combine the denominators by means of the Feynman identity and 

introduce by 6 -functions new variables: 

p(L, z) 2 3 (A. 16) 

-1 i,(z) (L- +f - ‘3 ;++t) 

2 
L,(z) = Mu = m2 - Ft (A. 17) 

where the new spectral function is connected with the other one by: 

p(L, z) = 
5-m2+ dt 

0 I 
4 

Y 
+ M(zo2 - [ M(z’) + ~1 2 

I 
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1-z x p L- ,.m;+-s+m2e l-+2t,z’l 

We need the following properties of this spectral function: 

p(Lz) d i 
-a(t)- 1 

P,(Z) 
i -am 

P, (2) - ig 
2 

g -0 

(A. 18) 

(A. 19) 
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Fig. 1 

Fig. 2 

Fig. 3 

Fig. 4 

Fig. 5 

Fig. 6 

Fig. 7 

Fig. 8 

Fig. 9 

Fig. 10 

FIGURE CAPTIONS 

S-channel iteration of reggeon exchange: the 

reggeon legs are crossed in all possible ways. 

(a) The Mandelstam graph; (b) Amati-Fubini- 

Stangellini (AFS) diagram. 

The four structures of reggeon-particle coupling 

(upper part) that contributes to the two-reggeon 

exchange. 

A non-nested structure. 

Reggeon-particle - Reggeon-particle amplitude. 

Two particle -- n-reggeon amplitude. 

Momentum notation for a two-particle n-reggeon 

coupling. 

A maximal-nested reggeon-particle coupling. 

Decomposition of the reggeon-particle - reggeon - 

particle amplitude into intermediate states. 

Bethe-Salpeter equation for the sum of ladder graphs. 
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